
Shallow Water Stationkeeping of an Autonomous Underwater Vehicle: The
Experimental Results of a Disturbance Compensation Controller

J.S. Riedel
Center for AUV Research
Naval Postgraduate School

Monterey, CA 93943
jsriedel@me.nps.navy.mil

ABSTRACT

The continual development of computer technology
has enabled the expansion of intelligent control into the field of
underwater robots, where potential uses include oceanographic
research, environmental monitoring and military mine
countermeasures.  With the naval focus shifting to operations in
the littorals, and the need to lower cost of operations, tetherless
autonomous vehicles are now being proposed for use in very
shallow water minefield reconnaissance.  These areas are
dominated by a highly energetic environment arising from
waves and currents.  Motion control in such an environment
becomes a difficult task and is the subject of this work.

The main objective of this paper is to show that
intervention tasks performed by intelligent underwater robots
are improved by their ability to gather, learn and use
information about their working environment.  Using a new
generalized approach to the modeling of underwater vehicles,
which directly includes disturbance effects, a new Disturbance
Compensation Controller (DCC) is proposed.  The DCC,
employing onboard vehicle sensors, allows the robot to learn
and estimate the seaway dynamics.  This self-derived knowledge
is embedded in a non-linear sliding mode control law which
allows significantly improved motion stabilization.  The
performance of the DCC has been experimentally verified in
Monterey Harbor using the NPS Phoenix AUV.

I. INTRODUCTION

This paper will discuss the development and
employment of a real-time disturbance compensation
controller (DCC) which will allow an AUV to dynamically
position itself in the presence of waves.  The paper will begin
with an overview of the DCC, followed by a discussion of an
asynchronous Extended Kalman Filter for state and
disturbance estimation.  This nonlinear estimator is critical to
the DCC performance since the Sliding Mode Controller
(SMC) requires full state feedback, and not all states are
measurable.  In addition, the EKF provides the controller
with a smoothed estimate of the unmeasured fluid particle
velocity which is used to compensate for the wave induced
disturbance.

Next, through the design and implementation of an
asynchronous simulator, which realistically models the
vehicle dynamics, the sensors including noise and the sensor
processes, the DCC is tuned and the achievable performance
is demonstrated.

Lastly, it is shown experimentally, that the DCC is stable and
allows the NPS Phoenix AUV to hold position in the surge
direction, while subjected to ocean waves in Monterey Bay.

A. DCC Overview

The design of the disturbance compensation
controller can be looked at as an optimization problem since
there are competing goals.  First, since the design
requirement is to minimize position error in the presence of
disturbances, a high gain control is desirable.  Using high
gain control, the system becomes sensitive to measurement
noise and uncertainty, thereby causing the gain to be reduced
to maintain stability.

An estimator is needed to provide the unmeasurable
states to the controller, and to filter the sensor noise thereby
improving the systems performance.  Here, the requirement is
to accurately track the signal, again requiring a high filter
gain, while smoothing the noise, (a low gain).  As with the
controller, trade-offs must be made.

The over all goal is to develop a combined
controller/estimator which, when implemented, will enable
the vehicle to maintain position while using noisy sensor
information.  The output of this system, for implementation,
is a commanded voltage that is sent from the DCC process to
the real-time execution computer, without excessive lags to
ensure stability. A mathematical description to the above
problem is given below, with a block diagram of the DCC in
provided in Figure 1.
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B. State And Disturbance Estimation

There are many methods available to estimate states and
disturbances in practice today.  A few of these include the
Luenberger Observer [1] and the Kalman Filter [2] for linear
systems, and the Sliding Mode Observer [3], the "Rajamani"
Observer [4] and the Extended Kalman Filter [5] for
nonlinear systems.  Each method has both pros and cons
depending on the application.  For this work, an Extended
Kalman Filter was chosen since a relatively accurate vehicle



model is available, and since the disturbance is stochastic in
nature.
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Figure 1.  Block Diagram of Disturbance Compensation Controller (DCC)

Kalman filtering is the process of recursively
updating an estimate of systems states based upon
measurements corrupted by noise.  The system state is a
collection of variables that describe the dynamics of a system,
and in this case they are position, relative velocity and
propeller thrust, of which only relative velocity is
measurable.

System state are updated with knowledge of system
dynamics (vehicle model), measurement dynamics
(measurement model), system noise (modeling uncertainty)
and measurement noise (measurement errors).  The system
model is not perfect in describing the dynamics of the vehicle
and will contain a certain amount of uncertainty, called
system noise.  There is also some uncertainty associated with
each measurement taken.  This uncertainty can be composed
of both random white noise and a bias.  Measurements which
cannot be directly obtained, such as fluid velocity, are related
to measurements which are directly obtainable, such as
relative velocity and ground velocity, in the measurement
model.  Recursively updating means the Kalman filter does
not need to keep record of all past measurements, only the
most recent ones.

II. MODEL AND FILTER DEVELOPMENT

Using a three state surge model [6] and a four state
AR model for the wave dynamics [7], an augment state and
disturbance model was formed, and used as the basis of an
EKF.  This model allows the disturbance to be treated as an
additional state, where the vehicle states and disturbance
estimates are filter outputs.  The augmented vehicle and
disturbance model is given by,
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where the AR coefficients are found using the an online
adaptive wave model.

A. Kalman Filter Algorithm

Using standard design techniques [2], the filter was
developed and implemented using the following algorithm.
First, the system model matrix A, system noise matrix Q,
measurement matrix C, measurement noise matrix R, and the
error covariance matrix P are initialized to appropriate
values.  The error covariance matrix is a can be thought of as
a level of uncertainty in the state vector.  Then the state
vector, error covariance and measurement vector are
propagated one time step using the model.

When the new measurement is received, and
innovation error is calculated based on the difference between
the measured values and the estimated values.  Using the
propagated error covariance, measurement noise matrix and
measurement matrix, a gain is determined for the state vector
and error covariance update.  This process of propagating and
updating is repeated through out the length of the vehicle
mission.  This recursive algorithm, in discrete form is given
by,
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where ΦΦ represents the system dynamics, and h=C since the
measurements are linear in the state.  The continuous
linearized matrices for this particular design are given as,
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1. Asynchronous Data Processing

In the preceding discussion, the data contained in the
measurements was assumed to be received at the same time
with equal intervals through out the mission.  In reality, all
measurements are not received at the same rate, therefore, the
EKF design must allow for this asynchronous sampling rate.
In the Phoenix AUV, the vehicle control loop runs at 8 Hz,
while the RDI DVL runs at 2 Hz, and the SonTek ADV at 6
Hz.  See [7] for more details on these sensors.  The main data
acquisition process samples the sensor processes at the same
frequency as the control loop, however, if the sensor has not
yet updated, the data acquisition process records the value of
the previous time step.  The filter allows for the varying
measurement rates by using a dynamic switching of the
measurement matrix, C.  The measurement matrix basically
uses a zero-order hold on the measurement channel that has
not been updated, and propagates the state using the previous
measurement.

III. TUNNING OF THE DCC

Using the filter design from the previous section,
and the sliding mode controller described in [6] an
asynchronous simulator was developed for design validation.
The simulator contains the non-linear vehicle dynamics,
asynchronous sensor models with measurement noise,
seaway dynamics and the DCC.  Using this simulator as a
design tool the DCC was adjusted to achieve an optimum
design.  The gains in both the controller and filter were
adjusted so that performance requirements were met.

The stability performance of the estimator is shown
through simulation, see Figure 2, since there are no formal
proofs to determine the stability of combined nonlinear
estimators and controllers.  As seen, the error covariance
levels all converge indicating a stable nonlinear filter design.
Some of the covariance levels may appear to be "too high"
giving the feeling that the filter is not properly designed,
however, design decisions must be made to ensure that the
filter lags are no too excessive, and that the estimator tracks
well.
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Figure 2.  DCC Error Covariance Evolution

IV. INITIAL IN-WATER TESTING

Using short missions, the DCC was adjusted to
achieve acceptable performance.  These runs were performed
on March 25, 1999, in Monterey Harbor.  Of concern, was
the amount of noise that was resident on the ADV sensor.
This noise was far beyond the level which the vendor
advertised.  Using the design results from the simulations, the
DCC was implemented in the Phoenix AUV.  Figures 3-5
display initial results.  As seen, the filter tracks the signals
extremely well, including the noise.
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Figure 3.  Short Segment In-Water Results, Position for RADV=10

This tracking of the noise has significant detrimental
effects to the propulsion system as seen in Figure 5.  The
noise had been transmitted into the controller resulting in
severe oscillation in the propeller response.  These
oscillations eventually lead to mechanical failure of the
propulsion system shafting due to the shearing of connecting
pins.

Using the information obtain during this set of runs
allowed the filter gains to be adjusted to eliminate the
transmission of sensor noise into the controller.  Using linear
design techniques, the combined controller filter transfer
function from ADV input to propeller output was formed.
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Figure 4.  Short Segment In-Water Results, Fluid Velocity Estimate for
RADV=10
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Figure 5.  Short Segment In-Water Results, Propeller RPMs for RADV=10

By adjusting the level of the measurement noise parameters,
attenuation of the noise into the control system was
accomplished, and the response bandwidth of the controller
was increased. This improvement in frequency response will
reduce the propeller oscillations, thereby minimizing the
chance of mechanical failure of the propulsion system.  Using
the new design values, the DCC was again tested in Monterey
Harbor.  The results of this testing are shown in Figures 6-8.
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Figure 6.  Short Segment In-Water Results, Position for RADV=100
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Figure 7.  Short Segment In-Water Results, Fluid Velocity Estimate for
RADV=100

195 200 205 210 215 220

-300

-200

-100

0

100

200

300

Time (s)

pr
op

el
le

r 
re

vs
 (

rp
m

)

Figure 8.  Short Segment In-Water Results, Propeller RPMs for RADV=100

As the result of the tuning of the DCC, the performance has
improved dramatically.  As before, the DCC maintains
position extremely well, with a much reduced propeller
response.  Comparing the magnitude of the estimated fluid
velocities between the two designs, Figures 4 and 7, it can be
seen that for the same magnitude of input disturbance,
position response has remained unchanged, but propeller
response has reduced increasing the life of the propulsion
system.

V. SOFTWARE IMPLEMENTATION

The implementation of this control process is unique
since it is split between the two CPUs installed in Phoenix.
The NPS AUV uses a Pentium based PC-104 running QNX
and a GESPAC Card Cage running OS9 for mission control
and execution.  The DCC requires information from both
processors, connected by Ethernet sockets, to compute and
pass the commanded propeller RPMs to the execution level.

The control architecture presently running in
Phoenix is based on shared memory processes.  The PC-104
computer runs a “main” process that controls the
synchronization of the data sharing, while the GESPAC clock
controls the real-time control features.  The two-processors
use the shared memory as the common data buffer, controlled
by semaphores to ensure the information transfer is consistent



with the clock speed.  A graphical representation of this
description is shown in Figure 9.  As seen in the graphic, for
the DCC implementation, all needed process are run in the
PC-104 with the only purpose for the GESPAC is to send the
commanded voltages to the propulsion motors.
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Figure 9.  Software Implementation of DCC

A block diagram of the DCC implementation in the Phoenix
AUV was given in Figure 1.  This diagram represents the
melding of the software and the hardware in the vehicle.  The
ground velocity is from the RDI, the relative velocity from
the ADV and ψ, r from the directional gyro.

VI. EXPERIMENTAL VALIDATION OF THE DCC

The DCC was tested in Monterey Harbor between
the months of March and May 1999.  During this time, the
Phoenix was held under surge control for over 90 minutes,
during various runs, without a drive off.  Table 1 provides a
sample of the runs conducted during the validation of the
controller.

Defining a measure of performance, the disturbance
rejection ratio (DRR), as the ratio of standard deviation of the
vehicle ground velocity to the standard deviation of the fluid
velocity, the ability of an AUV to reject disturbances for
different conditions and control designs can be compared.
Referring to the DRR definition, for perfect disturbance
cancellation the DRR will be equal to zero, while for designs
where the control input excites the vehicle, [7], the DRR will
be greater than one.  For each operating point, the standard
deviation of the propeller response is normalized by the
maximum propeller revolutions, nmax.

Table 1 indicates that excellent disturbance rejection
was achieved, even for the short runs where only limited
statistical information was recorded.  The tests showed that
even when the vehicle was disturbed by a source other than
the fluid velocity, it was able to return to the commanded
position in a stable fashion.

A series a plots, Figures 10-13, show the results of
one of the validation runs.  This run was conducted on April
22, 1999 in Monterey Harbor.  The Phoenix was commanded
to a navigational position of 0 meters in the longitudinal
direction.  As the results indicate, the vehicle behaved as

expected.  The standard deviation of the positional error was
9.6 cm with ground velocity standard deviation of 1.5 cm/s.
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Figure 10.  Comparison of Measured and Estimated Position, April 22, 1999,
Run#3
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Figure 11.  Propeller Response, April 22, 1999, Run#3
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Figure 12.  Measured Ground Velocity, April 22, 1999, Run#3

This run was the most interesting of the validation
runs conducted.  At the beginning of this run, it was noticed
that the starboard shaft was not turning.  Even with this
propulsion system casualty, the vehicle was able to hold
position and the controller did not go unstable.  With only
one shaft turning the effective input gain for the vehicle was



reduced by 50%.  Operations of this nature indicate a very
robust design.  It can be seen in Figure 11, that there is a
small increase in propeller revolutions around the 50 second
point of the run.  Data analysis indicated that this was
approximately when the starboard shaft failed.  Investigation
into the cause of the shaft failure determined that a universal
joint in that shafting had worked loose.
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Figure 13.  Fluid Velocity Estimate, April 22, 1999, Run#3

As a graphical representation of the performance
expected for the DCC a various simulations ware conducted,
using the asynchronous simulator discussed earlier, with the
estimated fluid velocity obtained during this run (April 22,
1999, run# 3) as the disturbance.  The gains on the DCC were
varied to produce a position response verses propeller
response curve.  The actual experimental results, presented in
Table 1, were superimposed on the theoretical curve obtained
from simulation.  These results are shown in Figure 14.  As
seen, the experimental and theoretical results are very close
indicating a physically realistic simulator.

The comparisons displayed in Figure 14, yield
insight into the achievable performance of the DCC.  It
indicates that there is a limit to the amount of disturbance
rejection that is physically realizable.  This limit is controlled
by ability of the propulsion system to produce the needed
input to maintain position without excessive oscillations.  The
excessive oscillations have a detrimental effect of the life of
the propulsion system.

As a note, the short runs, displayed in Figure 14,
were conducted with a controller gain parameter of η = 100, a
high gain.  If the length of these runs were extended, these
points would move closer to the curve as with the other runs
displayed.

Up to this point, the only results presented are for
the Phoenix maintaining position to the origin, the point
which the run was initiated.  Questions arise as to how
effective the controller is in dealing with transients.  This
question may be answered by referring to Figure 15.  This
figure depicts the transient response of the Phoenix for the
various DCC gains presented in Figure 14.  As the figure
indicates, the controller deals with transients extremely well.
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The responses displayed in Figure 16 are for the
regulator solution.  What is meant by this, recalling that the
SMC formulation requires kinematically consistent position,
velocity and acceleration, is that no command inputs, other
that position were used.  In doing this, it is expected that the
vehicle will over shoot and oscillate around the commanded
position consistent with some settling time.
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Figure 15.  Comparison of Transient Response for Various Control Gains

With these transient responses come some issues
with regard to operational implementation.  If the goal is to
position the vehicle close to, but with out touching, an object,
some means of predicting the transient must be available.  A
resulting question that needs to be answered is; Does the
developed simulator, which, based on the comparison in
Figure 14, accurately predict the transient response?  By
comparing the results of the experimental runs and the
simulated results, for the same disturbance input and DCC
design, see Figure 16, the question can be answer, "yes".

As seen in this plot, the simulated results accurate
reflect the measured transient response of the Phoenix.  The
steady state response, however, does not match.  The reason
for this is two-fold.  First, the Phoenix, for recovery reasons,
is maintained approximately two-pounds buoyant.  This
weight and buoyancy mismatch cause additional excitation
forces resulting from the wave induced fluid accelerations.
Since the fluid acceleration cannot be measured, this
additional excitation force is difficult to replicate in
simulation yielding errors between the real and simulated



response.  Second, the experimental results are measured
from a 6DOF rigid body, where as the simulator results come
from a 1DOF surge model.  The coupling effects from the
surge-pitch dynamics will effect the comparison.
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Figure 16.  Transient Response Prediction of the DCC

VII.   SUMMARY

The design, implementation and validation of a new
Disturbance Compensation Controller (DCC) has been
presented.  The results indicate that by using a properly tuned
system, the ability of intelligent underwater robots to perform
intervention tasks are improved by their ability to gather,
learn and use information about their working environment.
Although no formal proof for stability is available,
asynchronous simulations have demonstrated that the DCC is
stable and provides acceptable tracking and estimation of
state and disturbance inputs.  The work has validated that the
development and implementation of a real-time embedded
Disturbance Compensation Controller (DCC) for small
AUVs, and provided a new technology showing that it is
possible to use underwater vehicles for station-keeping tasks
in shallow water.
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Date Run# Length DRR σσn /nmax comments

4/2/99 4 4 min 0.3624 2.96 high gain,

short run

5 4 min 0.6324 3.08 high gain,

short run,

vehicle physical

disturbed

6 4 min 0.4312 0.265 high gain,

short run

8 4 min 0.5090 0.285 high gain,

short run

4/22/99 3 10 min 0.5508 0.108 high gain, single

shaft

5/25/99 6 10 min 0.3620 0.192 medium-high gain,

ADV noise

problem

8 10 min 0.3978 0.126 medium-low gain,

ADV noise

problem

9 10 min 0.4957 0.083 low gain, ADV

noise problem

11 10 min 0.3587 0.202 medium-high gain,

ADV noise

problem

12 10 min 0.4276 0.144 medium-low gain,

ADV noise

problem

Table 1  Sample Summary of DCC Validation Runs


